Skip to main content

Posts

Showing posts from July, 2023

How to Perform Unit Testing for AWS Glue Jobs in an Azure DevOps Pipeline

Unit testing AWS Glue jobs presents challenges due to the complexities involved in replicating the Glue environment locally. Fortunately, AWS offers a solution in the form of Glue container images available at Glue container images . These images allow us to perform unit tests effectively, as outlined in detail in the official documentation here . In this blog post, we will delve into the process of running AWS Glue job unit tests within an Azure DevOps pipeline and discuss how to calculate and publish code coverage for these tests. To begin with, the Glue container image operates under a special user named GLUE_USER , which is referenced in the associated dockerfile . USER glue_user Assuming you have developed your Glue job in a Python script named myawesomegluejob.py , which is stored in an Azure DevOps (AzDO) Git repository, creating a pipeline for this purpose might initially seem straightforward. However, executing build steps directly within the Glue container is not feasible

Serverless Generative AI: How to Query Meta’s Llama 2 Model with Microsoft’s Semantic Kernel and AWS Services

Generative AI is a type of artificial intelligence that can create new content such as text, images, music, etc. in response to prompts. Generative AI models learn the patterns and structure of their input training data by applying neural network machine learning techniques, and then generate new data that has similar characteristics. They are all the rage these days. 😀 Some types of generative AI include: Foundation models , which are complex machine learning systems trained on vast quantities of data (text, images, audio or a mix of data types) on a massive scale. Foundation models can be adapted quickly for a wide range of downstream tasks without needing task-specific training. Examples of foundation models are GPT, LaMDA and Llama . Generative adversarial networks (GANs) , which are composed of two competing neural networks: a generator that creates fake data and a discriminator that tries to distinguish between real and fake data. The generator improves its ability to fool the d